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Abstract

Commodity operating systems, e.g. Linux and Android, run-
ning on PC or smartphone, are ubiquitous in home, commer-
cial, government, and military settings. The booming pop-
ularity of PC and smartphone makes the commodity oper-
ating system an attractive target for attacks. These systems
are tasked with a variety of applications, e.g. from secure
software provided by trusted enterprises to regular applica-
tions including games and web browsers downloaded from
untrusted third-party website.

Since PC and smartphone are used both for working and
entertainment, both trusted and untrusted applications are in-
stalled on the same commodity operating system. The com-
plex interface between malicious applications and the oper-
ating system kernel makes the latter one vulnerable to mal-
ware. The compromised untrusted operating system is able
to break both privacy and integrity of secure applications.
The user mode secure application is not tamper-resistant and
immune to the privileged malicious operating system kernel.

Various methods have been proposed to execute mutu-
ally mistrusting software on commodity operating systems.
In this talk, we divide the state of the art research papers into
three classes. First, we discuss how to protect the secure ap-
plication from the untrusted operating system. Second, we
discuss the isolation of untrusted application from the be-
nign operating system. Third, we discuss how to remove the
trust relationship between application and operating system,
that is, neither application nor operating system trust each
other. We finally propose a framework for the secure execu-
tion of sensitive code on ARM architecture with TrustZone
technology.
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1. Introduction
Nowadays, PC and smartphone running the commodity op-
erating systems, which are ubiquitous in home, commercial,
government and military settings, become significantly in-
dispensable in our life. According to a report from Gartner
[1], the worldwide PC shipments totaled 82.6 million units
just in the fourth quarter of 2013. The most popular operat-
ing systems on PC are Windows, Linux and Mac OS. Various
applications are installed and executed on the commodity
operating system every day. Besides PC, recent years have
also experienced explosive growth of smartphone sales. In-
evitably, the rise in the popularity of smartphones also makes
them an attractive target for attacks. According to the report
from Canalys [2], the year of 2011 marks as the first time
in history that smartphones have outsold PCs. Their boom-
ing popularity can be partially attributed to their improved
functionality and convenience for end users.

PCs are used for a variety of daily works such as checking
emails, video conference and data processing. Smartphones
are also no longer basic devices for making phone calls and
receiving text messages, but powerful platforms, with com-
parable computing and communication capabilities to com-
modity PCs, for video conference, gaming, and even online
shopping. Generally, different applications have disparate
level of security requirement. For instance, on a smartphone
running Android, the online banking application has a higher
level of security requirement than the Angry Birds.

The execution of mutually mistrusting software brings se-
curity trouble to the commodity operating systems. Suppose
the PC is running a Linux operating system. The user might
use the PC to view a lot of PDF files every day. The PDF
file injected with malware is able to infect the operating sys-
tem because of the complex interface between the applica-
tion and the operating system. Latter, the user may login into
the online bank account to check the deposit. As the under-
pinning privileged operating system kernel, including key-
board driver, has already been compromised, the browser’s
privacy, i.e., the user’s credentials, will be stolen by theat-
tacker.

Another example is on a smartphone running an An-
droid operating system. Users are suggested to download
Android applications from official website, such as Google
Online Store. However, many users download repacked ap-
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plications, e.g., games, from the untrusted third-party web-
site. For instance, without protection, the malicious repacked
game is able to elevate the privilege, compromise the An-
droid runtime and even the Linux kernel. The compromised
Android operating system is able to infect the privacy and
integrity of other applications, e.g., the user’s identification
of Facebook.

In this paper, we discuss the solutions for the problems in-
troduced by the execution of mutually mistrusting software.
We formulate the problems into three sub-problems. The
first problem is to protect the secure application or sensitive
PAL (Pieces of Application Logic) from the untrusted oper-
ating system. Commodity operating systems entrusted with
securing sensitive data are remarkably large and complex,
and consequently, frequently prone to compromise. The pri-
vacy and integrity of the application are expected to be pro-
tected even in the event of a total OS compromise. Solutions
to this problem have a variety of applications in real life from
protecting the privacy and integrity of the certificate gener-
ation process on a CA server to isolating the sensitive list
of Transaction Authentication Numbers (TAN) from the un-
trusted Android operating system on a smartphone.

The second problem is to isolate the untrusted applica-
tion or an untrusted piece of code from the operating sys-
tem. Modern commodity operating systems are underpin-
ning many applications from different sources. The complex
interface between the application and the operating system
opens a large attack surface for the misbehaving application
to compromise the rest of the operating system. The oper-
ating system can be compromised by a piece of native code
downloaded and executed by the web browser with mecha-
nisms such as ActiveX and NPAPI, or an Android applica-
tion infected by DKFBootKit [13].

The third problem is how to establish the two-way pro-
tection, that is, to protect the application from the operat-
ing system while to protect the operating system from the
application. We rethink the security model and argue that a
two-way sandbox is desired. We discuss MiniBox [27], the
first paper whose objective is to remove the trust between
applications and the operating system on the Platform as a
Service (PaaS) cloud computing.

In this paper, we discuss the evolution of prior works. We
organize previous works based on the problems classifica-
tion and essential design considerations when building solu-
tions. The evolution graph of prior works on the three prob-
lems is in Figure 1. In section 2, we discuss the protection
of secure application from the untrusted operating system.
Section 3 is about the isolation of untrusted application from
benign operating system. In section 4, we discuss MiniBox
[27], the most up-to-date research paper on removing trust
between application and the underpinning operating system.

2. Secure App on Untrusted OS
2.1 OS can be untrusted

Although commodity operating systems are developed by
extremely professional software developers, the security
provided by commodity operating systems is often inade-
quate. Trusted OS components include not only the kernel
but also device drivers and system services that run with root
privilege (e.g., daemons that run as root in Linux). Once such
privileged code is compromised, an attacker gains complete
access to sensitive data on a system. The privileged operat-
ing system kernel can read/write any code/data region of any
user mode process. Both privacy and integrity are imperiled
by the hostile operating system.

Besides directly manipulating a secure application’s state,
the hostile operating system kernel can also compromise the
user mode application by Iago attack [17]. On commodity
operating systems, the application and kernel are conceptu-
ally peers and the system call API defines an RPC interface
between them. A carefully chosen sequence of integer return
values to Linux system calls can lead a supposedly protected
process astray. The following sample code demonstrates one
Iago attack. It maps a 1024 byte region of memory via the
mmap2 system call and then reads up to 1024 bytes into it
from a file descriptor using the read system call. Since the
kernel is responsible for memory management, instead of
the address of the newly allocated memory region, it returns
an address on the stack. The stack will be overwritten with
up to 1024 bytes of the kernel’s choice with the read system
call. Therefore, a saved return address on the stack may be
overwritten and the program can be coerced into executing a
return-oriented program.

p = mmap(NULL,1024 , p ro t , f l a g s ,−1 ,0 ) ;
r ead ( fd , p , 1 0 2 4 ) ;

To protect the secure application from the malicious OS,
a mechanism should be used to isolate the secure applica-
tion from the OS. In the meantime, the isolated application
should also be able to use the OS services. Ideally, the Iago
attack is prevented. In the following sections, we will dis-
cuss different mechanisms on secure application protection.
We divide the prior works into four classes as in Table 1.

2.2 Trusted Hardware based

Trusted Hardware allows the execution of pieces of appli-
cation logic (PAL) in an isolated environment. Flicker [32]
leverages the hardware support for Trusted Platform Module
(TPM) [3] and late launch recently introduced from AMD’s
Secure Virtual Machine (SVM) technology. SVM chips are
designed to allow the late launch of the software (e.g. Virtual
Machine Monitor or Security Kernel) at an arbitrary time
with the SKINIT instruction in CPU protection ring 0. As
part of the SKINIT instruction, the processor first causes the
TPM to reset the values of PCRs 17-23 to zero, and then
transmits the contents of the PAL to the TPM so that it can
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Figure 1. Evolution graph of prior works. The left branch includes prior works when application is trusted but OS is malicious.
The right branch includes prior works when application is untrusted but OS is benign. MiniBox is the combination of two
branches.

Solution Category Research Papers
Trusted Hardware BasedFlicker [32], TrustVisor [31]
Hypervisor Based Overshadow [18], InkTag [23], TrustVisor [31], Cloud Terminal [29]
Instrumentation Based Virtual Ghost [19]
TrustZone Based TLR [34], VeriUI [28], TrustUI [26]

Table 1. Solution categorization on the protection of secure application (PAL) from the untrusted OS.

be measured and extended into PCR 17. Software cannot re-
set PCR 17 without executing another SKINIT instruction.
PALs can leverage TPM-based sealed storage to maintain
state across Flicker sessions. Therefore, the sensitive task
can be spit into multiple sessions.

However, Flicker’s performance is not promising, espe-
cially for multi-session PAL. At the beginning of each ses-
sion, the TPM should decrypt sealed data from persistent
storage to recover the state of the previous session of this
PAL. At the end of this session, the TPM seals the data again
and stores the data on persistent storage. The frequent en-
cryption/decryption undermines the performance of Flicker.
TrustVisor [31] improves the performance of Flicker by sim-
ulating the TPM-based cryptography operations on a micro-
TPM. The micro-TPM is simulated by CPU chip. TrustVi-
sor, which is a tiny hypervisor, is booted with the late launch.
It is responsible for the registration, invoke and unregistra-
tion of all PALs. TrustVisor isolates PAL from the untrusted
operating system with the nested page table (NPT). Hard-
ware TPM attests the integrity of the tiny hypervisor and the
integrity of PAL is attested by the software-emulated micro-
TPM. TrustVisor is the combination of both trusted hardware
and hypervisor based solutions.

2.3 Hypervisor based

As we mentioned in last section, hypervisor can isolate
the secure application from the untrusted operating sys-
tem. Overshadow [18] utilizes a binary translation based
hypervisor with a mechanism called cloaking to prevent the
guest operating system from reading or tampering applica-
tion code, data and registers. Cloaking is the mechanism to
present an application context with a cleartexted view of
its pages, and the OS context with an encrypted view. At
any point in time, the page is mapped into only one shadow
page table - either a protected application shadow used by
cloaked user-space processes, or the system shadow used
for all other accesses. Overshadow introduces a shim into
the address space of the cloaked application, which cooper-
ates with the VMM to mediate all interactions with the OS.
The shim uses an explicit hypercall interface for interacting
with the VMM. System call transitions between guest-user
mode and guest-kernel mode are always trapped by a Binary
Translation based VMM.

However, Overshadow has focused on simply isolating
trusted code and data from the OS, with minimal support for
securely using OS features, that is, it is not able to prevent
Iago attack. It also doesn’t support flexible access control
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and crash consistency. InkTag proposes paraverification, a
technique that simplifies the hypervisor by forcing the un-
trusted OS to participate in its own verification. InkTag re-
quires the untrusted OS to provide information and resources
to both the hypervisor and application that allow them to ef-
ficiently verify the operating system’s actions. Verifyingthat
the OS provides system services correctly allows InkTag to
avoid having to reason about the OS’s implementation of
these services. Trusted application code executes in a high
assurance process, or HAP, which is isolated from the OS.
Nearly all application-level changes are contained in a small,
2000-line library (libinktag) the use of which is largely en-
capsulated in the standard C library.

Cloud Terminal [29] protects the secure application by
running the software on the remote server, instead of locally.
In Cloud Terminal, the only software running on the client,
which the user interacts with, is a lightweight secure thin
terminal whose primary functionality is to render the bitmap
sent by the remote server. Most application logic is in a re-
mote cloud rendering engine on the remote server. On the
client side, the secure thin terminal is isolated and protected
by the hypervisor. The tiny hypervisor helps supply a se-
cure display and input path to remote software. The secure
thin terminal has a very small TCB (23 KLOC) and no de-
pendence on the untrusted OS. Therefore it can be easily
checked and remotely attested to.

2.4 Instrumentation based

Virtual Ghost protects application from a compromised or
even hostile OS. It leverages compiler instrumentation (with
LLVM) to create ghost memory that the operating system
cannot read or write. Virtual Ghost is based on the Secure
Virtual Architecture (SVA) [20]. In SVA, all kernel and mod-
ule code must first go through LLVM intermediate repre-
sentation form (bitcode). The SVA VM translates code from
virtual instruction set to the native instruction set of thehard-
ware. SVA adds a set of instructions to LLVM called SVA-
OS; these instructions replace the hardware-specific opera-
tions used by an OS to communicate with hardware and to
do low-level state manipulation. During the translation from
virtual instruction to native instruction, load/store operations
are instrumented so that access to secure memory pages can
be prevented from OS without unmapping or encrypting se-
cure pages. Virtual Ghost also enforces Control Flow In-
tegrity (CFI) [14] on kernel code in order to ensure that the
compiler instrumentation of kernel code is not bypassed.

2.5 TrustZone based

Considering the limited computing resources on smart-
phones, hypervisor and instrumentation based solutions are
not applicable to the smartphone. TrustZone [4] is utilizedon
smartphone to protect the secure application. TrustZone isa
hardware security technology incorporated into recent ARM
processors. With TrustZone, the processor can execute in-
structions in one of two possible security modes, referred to

Figure 2. Split CPU Mode with TrustZone Support

as the normal world, where untrusted code executes, and the
secure world, where secure services run as in Figure 2. These
processor modes have independent memory address spaces
and different privileges. While code running in the normal
world cannot access the secure world address space, code
running in the secure world can access the normal world ad-
dress space in certain conditions. Besides memory, periph-
erals and interrupt are also world-sensitive. World switchis
done via a special instruction called the Secure Monitor Call
(smc).

Trusted Language Runtime (TLR) [34] is a system that
protects the confidentiality and integrity of .Net mobile ap-
plication from OS security breaches by separating and iso-
lating the application’s security-sensitive logic from the rest
of the application. TLR and security-sensitive code are in
the secure world of TrustZone. TLR is a small runtime en-
gine that is capable of interpreting .Net managed code in-
side a trusted secure environment. It is carefully crafted
by borrowing parts of the runtime engine design from the
.NET Micro Framework (NETMF) so that the TCB is sig-
nificantly smaller than a full-blown .NET framework and a
full-featured OS. Security-sensitive code and data are in a
Trustbox which is an isolation runtime environment that pro-
tects the integrity and confidentiality of code and data. The
Trustlet specifies the secure data and an interface that defines
what data can cross the boundary between the Trustbox and
the untrusted world. With TLR, the developer should manu-
ally split the application into sensitive and nonsensitivepart.
A secure application can package the code handling sensitive
data into TrustLet and run it in the TrustBox in the Secure
World.

However, TLR does not support direct I/O within the Se-
cure World. VeriUI [28] is able to securely handle user inputs
(i.e., passwords) and communication with remote servers.
Smartphone applications often augment their functionality
by accessing user data mentioned by services such as Twit-
ter and Facebook. VeriUI is proposed to prevent phishing
attacks by untrusted OS through a secure and isolated envi-
ronment for password input and transmission. An app can
invoke a web browser running in the secure environment
of TrustZone to retrieve an OAuth token after the user suc-
cessfully authenticates. Even the malicious OS cannot have
access to the password data. The secure kernel running in
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secure environment can use its protected resources (i.e., a
vendor-installed public-key pair) to generate a signed attes-
tation that includes a hash of the Secure World’s system soft-
ware as well as information about the user’s login request.

As VeriUI runs a Linux in TrustZone secure world to pro-
vide the attested login for users, it has a very large TCB.
TrustUI [26] takes a step further by excluding drivers for
user-interacting devices like touch screen from its trusted
computing base. TrustUI is a new trusted path design for
mobile devices that enables secure interaction between end
users and services. It is based on ARM’s TrustZone technol-
ogy and requires no trust of the commodity software stack.
TrustUI adopts a mechanism that logically splits a device
driver into two parts: a backend running in the normal world
and a frontend running in the secure world. The backend part
is the unmodified driver and its corresponding wrapper in
the normal world, while the frontend part works on top of
it and provides safe access to device for secure pages. The
two parts communicate through corresponding proxy mod-
ules running in both worlds which exchange data through
shared memory.

3. Untrusted App on Benign OS
In this section, we discuss the protection of the operating
system from an untrusted application or a piece of untrusted
code. In this paper, we call both untrusted application and
untrusted code as untrusted module. The untrusted module
can be pieces of native code downloaded by a web browser,
an application uploaded and executed on the PaaS server, or
an Android application downloaded from an untrusted third-
party website. Although the isolation of untrusted module
can prevent it from infecting the operating system, it is far
from enough. There are other challenges. First, the isolated
code module wants to interact with the operating system
services via system calls. Second, the isolation (sandbox)
should not impact the performance of program execution.
Third, a low implementation overhead is expected, that is,
the modification to compiler, linker, application source code
and operating system kernel source code should be mini-
mized. Last, since the smartphone has limited resources, the
isolation should be lightweight.

In this paper, we categorize the prior works according to
the granularity of isolation as in Table 2. The granularity of
isolation varies, including intra-process, inter-process, inter-
namespace and inter-VM.

3.1 Inter-VM based

The naive approach is to isolate each untrusted module into
its corresponding VM. There are a variety of virtual ma-
chine monitors, including Xen [5], KVM [6], Qemu [7],
and VMWare [8]. Recently, the hardware virtualization ex-
tension has been added into the ARM and the ARM based
KVM [21] is integrated into the Linux kernel since Linux

3.9. Since this approach is clear and self-explained, we will
not discuss it in detail in this paper.

3.2 Intra-Process based

Intra-Process protection is to isolate the untrusted mod-
ule from other memory regions in the same address space.
SFI [35] is proposed to sandbox the untrusted module by
rewriting the untrusted code at the instruction level, that
is, to instrument store/load and control flow instructions.
However, it only works for RISC architectures. PittSFIeld
[30] presents sandboxing technique that can be applied to
CISC architecture e.g. IA-32, and whose application can be
checked at load-time to minimize the TCB. Unlike RISC
architectures, whose instructions have the same length, the
x86 has variable-length instructions that might start at any
byte. To avoid this problem, PittSFIeld divides memory into
segments whose size and location is 16-byte aligned. New
instructions are instrumented before store/load and control
flow instructions to check that the sandboxed module can-
not read/write data outside sandbox and transfer to illegal
control flow target outside sandbox.

A weakness of PittSFIeld is it cannot effectively mediate
the access from untrusted module to operating system ser-
vices. Besides isolating the untrusted module, Native Client
[37] also allows the module to interact with services, such
as file I/O and local database access, by the combination of
intra-process and inter-process approaches. An Intra-Process
based sandbox is used to isolate the untrusted module from
the runtime service, which resides in the same address space
as the sandboxed untrusted module. Runtime service medi-
ates the communication between the untrusted module and
other processes including web browser and other services.

3.3 Inter-Process based

Krude et al. [25] propose an inter-process based approach to
sandbox the untrusted module. It is especially designed for
PaaS architectures, where code execution needs to be iso-
lated to protect tenants from unauthorized access to their
data by other tenants and to protect the host system from
any type of intrusion by other tenants. The untrusted mod-
ule is uploaded to the PaaS server and it is isolated in a new
process. Krude et al. use the process barrier and the seccomp
filter mechanism to restrict access to memory and to the sys-
tem call interface. Almost all system calls are blocked for
the isolated process. Besides memory allocation and deal-
location, the isolated process can communicate with OS by
sending to request to a supervisor process via pipe, which is
the IPC mechanism on Linux. The supervisor process will
process the request and send the response back to the iso-
lated process also via pipe.

3.4 Inter-Namespace based

The Inter-Namespace based approach is primary proposed
for smartphone running Android. Nowadays, smartphones
are ubiquitous. Many people use the smartphone both for
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Solution Category Research Papers
Inter-VM Based KVM/ARM [21]
Intra-Process Based SFI [35], PittSFIeld [30], Native Client [37]
Inter-Process Based Native Client [37], Krude et al. [25]
Inter-Namespace BasedTrustDroid [16], Cells [15], AirBag [36]

Table 2. Solution categorization on the protection of OS from the untrusted application.

working and personal needs. However, the personal applica-
tions downloaded from the untrusted website can compro-
mise the application issued by the trusted enterprise. There-
fore, many users carry multiple phones to accommodate
work, personal and geographic mobility need. Cells [15]
proposes a smartphone virtualization solution so that multi-
ple virtual smartphones can run simultaneously on the same
physical smartphone in an isolated, secure manner.

Unlike the virtualization techniques mentioned in section
3.1, Cells leverages a lightweight OS-level virtualization by
the utilization of namespace. Linux namespace is being used
by OpenVZ [9] and LXC [10]. A set of processes can be
grouped into the same namespace. Each Linux namespace
has PID namespace isolation, network namespace isolation,
UTS namespace isolation, mount namespace isolation and
IPC namespace isolation.

Cells observes that smartphones display only a single ap-
plication at a time, and introduces a usage model which
has one foreground Virtual Phone (VP) that is displayed
and multiple background VPs that are not displayed at any
given time. The foreground VP is always given direct ac-
cess to hardware devices while the background VPs are
given shared access to hardware devices when the fore-
ground VP does not require exclusive access. Cells provides
novel kernel-level and user-level device namespace mecha-
nisms to efficiently multiplex hardware devices across mul-
tiple VPs. Therefore, untrusted application inside personal
VP (namespace) will not be able to compromise the trusted
application inside enterprise VP.

While Cells aims to embrace the emerging Bring-Your-
Own-Device (BYOD) paradigm, each VP is treated equally
and the isolation is achieved at the coarse-grained VP bound-
ary. Unlike Cells, AirBag [36]’s objective is to boost the
smartphone’s defense capability against the malware infec-
tion by isolating the untrusted application in the AirBag
environment. By dynamically creating an isolated runtime
environment with its own dedicated namespace and virtu-
alized system resources, AirBag is able to protect the OS
from the malicious untrusted applications, e.g., an Android
game repacked with the malware. AirBag creates and decou-
ples an Application Isolation Runtime (AIR) from the native
Android runtime, which contains Java & Native Libraries,
Application framework (e.g., SurfaceFlinger service) and
Dalvik virtual machine. AIR does not need to be trusted
as it might be potentially compromised by untrusted appli-
cation. AirBag multiplexes hardware resources between the

AIR and native runtime by either creating a second resource
(e.g., memory buffer) or creating a proxy between runtimes
and hardware to mediate access from different runtimes.

4. Two-Way Protection
We discussed the protection of secure application from un-
trusted OS (e.g., TrustVisor [31]) in section 2 and the pro-
tection of benign OS from untrusted application (e.g., Native
Client [37]) in section 3. In this section, we discuss the re-
moving of trust between the application and operating sys-
tem. Within my knowledge, currently, MiniBox [27] is the
first and the only attempt toward a practical two-way sand-
box for x86 native applications by combining TrustVisor and
Native Client.

Platform-as-a-Service (PaaS) is one of the most widely
commercialized forms of cloud computing. According to
Google, in 2012, there were 1M active applications running
on Google App Engine [11], where untrusted applications
are sent by customers. Therefore, it is critical to protect
the cloud platform from the untrusted applications. Besides
cloud provider such as Google, security on PaaS is also
a concern for cloud customers. People should rethink the
security model of PaaS cloud computing because a two-way
sandbox is desired.

Although it seems promising to combine a one-way sand-
box (e.g., TrustVisor) and a two-way memory isolation
mechanism (e.g., Native Client) to establish two-way pro-
tection, there are many challenges. First, a deliberate sys-
tem design is required. Second, the interface between soft-
ware modules for OS protection and the application should
be minimized and secure. Finally, the design of TrustVi-
sor doesn’t support Iago attack prevention. The final system
design should be able to protect applications against Iago
attack.

MiniBox [27] combines the one-way sandbox for x86 na-
tive code and hypervisor-based two-way memory isolation.
As in figure 3, the sandbox is split into service runtime mod-
ules and OS protection modules. The service runtime is in-
cluded in the isolated memory space with the application
together to support application execution. The original dis-
assembly based sandbox is not required anymore because
the hypervisor not only isolates the application from OS, but
also isolates the OS from the application. To prevent Iago
attacks, the system calls are divided into sensitive calls and
non-sensitive calls. All sensitive calls are handled directly
by a LibOS [33], which the application trusts, residing at
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Figure 3. MiniBox Architecture

the Mutually Isolated Execution Environment (MIEE). Non-
sensitive calls will be forwarded to the Regular Environment
(RE). The OS in RE handles the non-sensitive calls mediated
by the OS protection module in RE.

5. Discussion
5.1 More Dimensions

In this paper, we discuss prior works along just one dimen-
sion, the trust between the application and OS. In this dimen-
sion, we divide prior works into ”App does not trust OS”,
”OS does not trust App” and ”Mutually Mistrusting”. There
are also other dimensions to discuss the prior works. For in-
stance, some works [18, 19, 23, 25, 27, 29–32, 35, 37] are
proposed for PC and some works [15, 16, 26, 28, 34, 36]
are proposed for smartphone. While some works are pro-
posed for a local PC or smartphone, some works are pro-
posed for cloud environment, such as PaaS [25, 27]. Flicker
and AirBag only work for single application, others such as
TrustVisor, Cells and MiniBox can support many applica-
tions from different users simultaneously. Some works are
designed to support the protection and isolation of just pieces
of application logic (PAL), while Overshadow and AirBag’s
protection mechanisms are in the granularity of the whole
application. Overshadow does not require the modification
to the source code of the application while InkTag requires
the user to change the way of programming.

5.2 Limitations

Although many prior works have already solved the prob-
lems with a variety of mechanisms, there still exist some
limitations. While MiniBox [27] is the first known attempt to
remove the trust between the application and OS on PaaS, it
supports only a single guest OS at this time. Besides, There
is no two-way protection on Android. Android makes the
problem more complex. Unlike Linux, where one task is im-
plemented as a single application, the task on Android is
usually accomplished by a set of applications together. The

compromised Android runtime is able to infect the applica-
tion in a way that is similar to Iago attack. It is expected
that the Android application cannot be compromised even
its underpinning runtime is malicious. We hope to investi-
gate how Linux kernel helps verify the behavior of a com-
promised Android runtime.

The hypervisor-based isolation solutions, including TrustVi-
sor, InkTag and MiniBox, cause overhead in context switch.
The VMFUNC instruction released on the latest Intel 4th
Generation Processor enables the software in guest OS to
switch the hardware Extended Page Table (EPT) without the
VM exit. Since VM exit is one of primary reasons for perfor-
mance overhead of VM, we hope the investigation on how to
perform secure environment switch using the VMFUNC in-
struction will improve the performance of hypervisor based
solution.

6. Future Work
Most prior works on PC are based on x86 architecture, e.g.,
Intel and AMD. x86-based servers are not energy efficient.
To handle hundreds of millions of users and their associ-
ated transactions, companies such as Amazon, Facebook,
and Google run immense data centers with until-recently
unimaginable computation and storage capacities. As on-
line services become pervasive, projections indicate that
electricity consumed in global data centers worldwide in
2010 is more than 200B KWh, between 1.1% and 1.5% of
worldwide electricity use [24]. Three years ago, Google an-
nounced that their facilities have a continuous electricity us-
age equivalent to powering 200,000 homes [22].Therefore, it
is promising to replace x86 with ARM architecture, which is
more energy efficient, to build the next generation of servers
in the cloud. There are already many ARM development
boards published, such as Raspberry Pi, BeagleBone and
Cubitruck. Recently, AMD announces plans to sample 64-
bit ARM Opteron processors [12].

In the future, we want to explore the security problems
on ARM architecture. Although prior works such as TLR
[34], VeriUI [28] and TrustUI [26] also use security fea-
tures of ARM, they are designed especially for smartphones.
We propose the first solution to execute the secure PAL for
ARM architecture either on a single server or in the cloud
environment. Virtualization can effectively achieve the mu-
tually memory isolation between application and OS. How-
ever, currently the hardware virtualization extension is not
supported by all ARM CPUs. For instance, the ARM Cortex-
A8 Processor does not support hardware virtualization.

Our proposal, as in Figure 4, leverages the TrustZone,
which is supported by most ARM CPUs, to isolate the secure
PAL in the secure world. The regular OS is running in
the normal world while the secure PAL is executed in the
secure world. Unlike virtualization which can create more
than one isolated environments, there is only one secure
world with TrustZone. To prevent the secure PAL of one

7



Figure 4. Secure execution of PAL on ARM Architecture

application from compromising the PAL of another, all PALs
are sandboxed in the secure world. We will use TrustZone to
emulate the secure boot, late launch and TPM operations.
As ARM boards usually have limited resources, the secure
world tiny kernel will not be loaded into memory unless the
execution of PAL is registered and triggered. To prevent Iago
attack, we divide the system calls into sensitive calls and
non-sensitive calls. All sensitive calls, which can be used
by malicious OS to mount the Iago attack, will be handled
directly by the tiny kernel in secure world. Non-sensitive
calls will be redirected to the untrusted OS in normal world.
As the tiny kernel is only responsible for supporting the
Micro-TPM, memory management and handling sensitive
system calls, the TCB is small.

7. Conclusion
The protection of secure application from malicious OS and
the sandbox of untrusted application from benign OS on
the PC are two relatively mature research topics that have
made substantial advances over the last decade. However,
how to remove the trust between the application and OS on
both PC and smartphone is still not fully explored. Many of
prior works have limitations, e.g., the environment switch
generates nontrivial performance overhead. In this paper,we
discuss the evolution of prior works on the three problems.
More future works are expected especially for smartphone
and ARM-based server/cloud. In the future, the design of
cloud computing framework should balance security, perfor-
mance, cost and mobility.
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[14] Martı́n Abadi, Mihai Budiu,Úlfar Erlingsson, and Jay Ligatti.
Control-flow integrity. InProceedings of the 12th ACM Con-
ference on Computer and Communications Security (CCS),
2005.

[15] Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof,Oren
Laadan, and Jason Nieh. Cells: A virtual mobile smartphone
architecture. InProceedings of the Twenty-Third ACM Sym-
posium on Operating Systems Principles (SOSP), 2011.

[16] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Stephan
Heuser, Ahmad-Reza Sadeghi, and Bhargava Shastry. Prac-
tical and lightweight domain isolation on android. InPro-
ceedings of the 1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices (SPSM), 2011.

[17] Stephen Checkoway and Hovav Shacham. Iago attacks: Why
the system call api is a bad untrusted rpc interface. InPro-
ceedings of the Eighteenth International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS), 2013.

[18] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap
Subrahmanyam, Carl A. Waldspurger, Dan Boneh, Jeffrey
Dwoskin, and Dan R.K. Ports. Overshadow: A virtualization-
based approach to retrofitting protection in commodity oper-
ating systems. InProceedings of the 13th International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2008.

[19] John Criswell, Nathan Dautenhahn, and Vikram Adve. Virtual
ghost: Protecting applications from hostile operating systems.
In Proceedings of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS), 2014.

[20] John Criswell, Andrew Lenharth, Dinakar Dhurjati, and
Vikram Adve. Secure virtual architecture: A safe execution
environment for commodity operating systems. InProceed-
ings of Twenty-first ACM SIGOPS Symposium on Operating
Systems Principles (SOSP), 2007.

[21] Christoffer Dall and Jason Nieh. Kvm/arm: The design and
implementation of the linux arm hypervisor. InProceedings
of the 19th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS), 2014.

[22] James Glanz. Google Details, and Defends, Its
Use of Electricity. The New York Times, online at
http://www.nytimes.com/2011/09/09/technology/

8



google-details-and-defends-its-use-of-electricity.

html?_r=0.

[23] Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z.
Lee, and Emmett Witchel. Inktag: Secure applications on
an untrusted operating system. InProceedings of the Eigh-
teenth International Conference on Architectural Supportfor
Programming Languages and Operating Systems (ASPLOS),
2013.

[24] Jonathan G. Koomey. My new study of data center electricity
use in 2010.www.koomey.com/post/8323374335, 2011.

[25] Johannes Krude and Ulrike Meyer. A versatile code execution
isolation framework with security first. InProceedings of the
2013 ACM Workshop on Cloud Computing Security Workshop
(CCSW).

[26] Wenhao Li, Mingyang Ma, Jinchen Han, Yubin Xia, Bingyu
Zang, Cheng-Kang Chu, and Tieyan Li. Building trusted path
on untrusted device drivers for mobile devices. In4th Asia-
Pacific Workshop on Systems (APSys), 2014.

[27] Yanlin Li, Jonathan McCune, James Newsome, Adrian Per-
rig, Brandon Baker, and Will Drewry. Minibox: A two-way
sandbox for x86 native code. InProceedings of the 2014
USENIX Conference on USENIX Annual Technical Confer-
ence, USENIX ATC, 2014.

[28] Dongtao Liu and Landon P. Cox. Veriui: Attested login for
mobile devices. InProceedings of the 15th Workshop on
Mobile Computing Systems and Applications (HotMobile),
2014.

[29] Lorenzo Martignoni, Pongsin Poosankam, Matei Zaharia, Jun
Han, Stephen McCamant, Dawn Song, Vern Paxson, Adrian
Perrig, Scott Shenker, and Ion Stoica. Cloud terminal: Se-
cure access to sensitive applications from untrusted systems.
In Proceedings of the 2012 USENIX Conference on Annual
Technical Conference.

[30] Stephen McCamant and Greg Morrisett. Evaluating sfi fora
cisc architecture. InProceedings of the 15th Conference on
USENIX Security Symposium, 2006.

[31] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou,
Anupam Datta, Virgil Gligor, and Adrian Perrig. Trustvisor:
Efficient tcb reduction and attestation. InProceedings of the
2010 IEEE Symposium on Security and Privacy.

[32] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig,
Michael K. Reiter, and Hiroshi Isozaki. Flicker: An execution
infrastructure for tcb minimization. InProceedings of the 3rd
ACM SIGOPS/EuroSys European Conference on Computer
Systems 2008.

[33] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben
Olinsky, and Galen C. Hunt. Rethinking the library os from
the top down. InProceedings of the Sixteenth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2011.

[34] Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wol-
man. Using arm trustzone to build a trusted language runtime
for mobile applications. InProceedings of the 19th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014.

[35] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Su-
san L. Graham. Efficient software-based fault isolation. In
Proceedings of the Fourteenth ACM Symposium on Operating
Systems Principles (SOSP), 1993.

[36] Chiachih Wu, Yajin Zhou, Kunal Patel, Zhenkai Liang, and
Xuxian Jiang. Airbag: Boosting smartphone resistance to mal-
ware infection. InProceedings of the 21th Annual Network
and Distributed System Security Symposium (NDSS), 2014.

[37] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen,
Robert Muth, Tavis Ormandy, Shiki Okasaka, Neha Narula,
and Nicholas Fullagar. Native client: A sandbox for portable,
untrusted x86 native code. InProceedings of the 2009 30th
IEEE Symposium on Security and Privacy.

9


