Information Technology Jowrnal 10 (1) 106-112, 2011
ISSN 1812-5638
© 2011 Asian Network for Scientific Information

Recognition Algorithm Design and Complex Analysis for Languages of S-Nets

Tingting Cui, Qingtian Zeng and Dongli Zhang
College of Information Science and Engineering,
Shandong University of Science and Technology, 266510, People’s Republic of China

Abstract: S-Net is a kind of structure-simple Petri nets and its behaviors are easy to be specified. In this study,
we observed the classification of S-Nets and then gave the recognition method of every kind of S-Nets. A finite
automaton 1s constructed first that can be used to recogmze the language of a bounded Petri net. Based on the
finite automaton constructed, the language recognition algorithm for each kind of S-Nets is proposed and the
time complexity of the proposed algorithm 1s discussed. By several groups of experimental data, the time

complexities of the proposed algorithms are checked.

Key words: Petri net, petri net language, language recognition

INTRODUCTION

As models for moedeling and analyzing distributed
systems, Petri nets are used in a wide range of domains.
The transition firing sequences can specify the behaviors
of the Petr1 nets and Petri nets languages are recognized
as a set of transition firing sequences. Problems of Petri
nets languages are well-studied n recent years and some
relatively perfect solutions have been given by many
researchers. However, most of them regard Petri nets as
language generators (Zeng and Wu, 2002, 2004,
Zeng et al., 2004; Iang and Lu, 2001 ; Jiang ef af., 1997).
By now, there is only a few people (Tiang et al., 1998)
recognize the possibility of utilization of Petri nets as
languages 1dentifiers. Jiang ef af. (1998) gave several
recognition algorithms for Petri nets languages, including
a serial algorithm and two parallel algorithms, but these
algorithms are extended for ordinary Petri nets and are too
complicated. 3-Net is a kind of simple-structure Petri nets
with good structure and behavior property. Zeng and Wu
(2002) gave languages properties and description
methods for S-Nets. In this study, we study the
recognition problems for languages of 3-Nets, how to
solve them and also their time complexity. At last, by
several groups of experimental data, the time complexities
of these language recogmtion algorithms are verified. The
solution 1n this study will be of great benefit to the
further study of language recognition problems for
structure-complex Petri nets.

BASIC CONCEPTS AND NOTATIONS OF S-NETS

Definition 1 (Wu, 2006): A triple N = (S T, F) 1s named as
a net iff

(HSuT=e

(2)8nT =5

(3) Fc ((SxT)u (T=S))

{4) dom (F)u cod (F)y = SLIT

where, dom (F) = {x € SUT |3y € SUT: (x, y) €F} and
cod (F) = {x ¢ SUT |3y ¢ 8UT: (v, x) cF}

Definition 2 (Wu, 2006): Let N = (S, T; F) be a net. For
any x € SuT,

*x = {y|ly € SuTA (y, x) € F} is named as the preset or
input set of x and

x " = {y|ly € SUTA (x, y) € F} is named as the postset or
output set of x. "xlUx" is named as the extension of x.

Definition 3 (Wu, 2006): Let N = (S, T, F) be a net. The
mapping M: S-{0 1, 2,..} is said to be the marking of a net
N and (N, M) (which is the same as (3, T; F, M)) is named

as a marking net.

Definition 4 (Zeng and Wu, 2002): Let N = (5, T; F) be a
net.

(1) N is an S-graph if forany teT: |'t|=|t"| =1.IfN = (S, T,
F)is an S-graph, X (N, M) is named as a marking S-graph
()N is an S-net if teT, |'t| <l and |t|<1. EN=(S, T, F)
1s an S-net, X (N, M;) 1s named as a marking S-net

According to Defimtion 4, an S-graph is obviously an
S-net.

Definition 5 (Zeng and Wu, 2002): Let N = (S, T, F) be an
S-net. For any t<T, t 1s called a primitive transition of N if
't = » and t is called a terminal transition ift* = &.

Corresponding Author: Qingtian Zeng, College of Information Science and Engineering,
Shandong University of Science and Technology, 266510, People’s Republic of China

Inform. Technol. 1., 10 (1): 106-112, 2011

8 8
t, . &
8, 5,
1 t.
t,
N
® (®)

Fig. 1: (a-d) Four kinds of S-nets

The S-nets can be classified into five classes
according to the primitive and terminal transitions, which
are as follows.

(1) An S-net without primitive transitions or terminal
transitions (1.e., an S-graph)

A marking S-net without primitive transitions or
terminal transitions (1.e., a marking S-graph)

A marking S-net with terminal transitions but without
primitive transitions

An S-net with primitive transitions only

A marking S-net with primitive transitions only

(2
3)

“4)
(3)

An S-graph 1s without markings, so it 1s impossible to
fire any transition in an S-graph. In this study, we don’t
consider the language recogmtion of an S-graph
Figure 1 gives four S-nets, where (a) is a marking S-graph,
(b) 1s a marking S-net with terminal transitions but without
primitive transitions, (¢) is an S-net with primitive
transition only and (d) 1s a marking S-net with primitive
transition only.

LANGUAGE RECOGNITION OF S-NETS

Definition 6: (Zeng and Wu, 2002): 1. (X)= {ojo e T* A
M, [o=M, A (Vs € S-S, M, (5) = 0} is defined as the
language of a Petri net X = (8, T; F, M,), where, S8 is
named as the end place set of X.

The common language operations include +
(Selection) operation, » (Comnection) operation and *
(Kleen Closure) operation (Garg and Ragunath, 1992). ||
(Parallel) and a-Closure operations are also introduced by
Garg and Ragunath (1992) and Zeng (2004).

Definition 7 (Zeng, 2004): The parallel operation (||) on
the alphabet Q is formally defined as follows:

(1) Forallae (2, ale=¢|a= {a}, where, € i1s the empty
word of €.

(2) Foralla, bef and all 0,, 6, €), aso,||bec, = a»
(0,|bea,)ubs (a0 |0,)

107

8

©

LetL (%) be the language of a Petrinet X, = (P, T;; F,,
My, Sg) (1 € {1, 2}). The operation || of language L. (%) and
L (%)) is defined as L. (E)|L (£,)) = {0,|0,]|0, € L. (E)), 8,61
(T}

Definition 8 (Garg and Ragunath, 1992): The c-closure
of alanguage 1. is defined as:

L= |

i=01, -

where, L' = L|L*" (Iz2)

Example: 1. = {asbec}, then 1" = {w|¥s & Pref (w)).#
(a, s)=# (b, s)=# (¢, 8) AH# (a, w) A# (b, w) A# (¢, w)b,
where, Pr ef (w) i3 the prefix of w and # (a, w) is the
number of a oceurring in w.

Theorem 1: If ¥ = (S, T; F, M,, S;) 1s a marking S-graph,
L(X) can be recognized by a finite automaton.

Proof: Construct a finite automaton FSM = (T, Q, 8, g, qz),
as follows:

(H I'-T

(2) Q- RM,)

(3) &~ {(M, t, MM, My € R (M)A (M, [t>M))}
4 qo- M,

(5) gp— M, (Ws € 3-3; M, (5) =0)

In order to prove that L (X) can be recogmzed by
FSM = (T, Q, 9, qy, qp), we should prove L () =1 (FSM),
where L. (FSM) is the language recognized by FSM.

First, we prove L(X) ¢ L. (FSM). For any o that can be
recogrnized by the marking S-graph % = (3, T, F, M,;, 3p, it
means 0 € L (). Thus, there should exist a transition t
comnecting with the place with tokens mn it and this
transition can be fired for finite times (suppose the
number is n). After firing, the token will move into the
output places of t for finite times and finally reaches the
set of the end places 3, Let, 0, 0,, 0,,..., 0, trace the firing
sequence 1, 2., n and 0~ 0,*0,20;2....*0_. It is easy to
prove that g, (j £ {1, 2,... n}) can be recognized by I'SM, so
ol (FSM).

Inform. Technol. 1., 10 (1): 106-112, 2011

Then we prove 1. (FSM)cL(X). Vo € L (FSM), then
0- 0,%0,%0,... *0, and Vo, € L (FSM) (j = {1, 2,.n}).
Tracing every o, in X, we find o, is a transition firing
sequence fired by a transition t commecting with the place
with token in it. So, the token will move into the output
places of t and finally reach the set of the end places S;
Therefore, o, € L (X), s0 0 0,%0,20.¢....¢g, describe the
behavior of a transition t connecting with a place with
token m it fired then nm mto the output places and finally
run into the set of end places S, soo € L (X).

Theorem 2: If X (8, T, F,M,, Sy is a marking S-net with
terminal transitions but without primitive transitions, T. (X)
can be recognized by a finite automaton.

Proof: For any S-net & = (S, T; F, M, S;) with some
terminal transitions, we can construct another S-net
% =(8, T, F, M/, 8/ without any terminal transitions,
such that T (%) =1 (&) X' = (8, T; F', M/, S} can be
constructed as follows: S' - Suis .}, F'=Fu {(t,s)|te T,
t=o},

M, (s}
0

VseS':Mh(s)(—{ 5% S
§=5,
S'e=Su {s,,} We can prove that L (X) =L (X).
We construct a finite automaton FSM (T, Q, 8, q., gz,
as follows:

(1 '=T

(2) Q- RMY)

(3) B~ {(M, t, MM, My e R (M)A (M [t=M))}
4 qu - M,

(5) ge= M. (Ws e S-S, M, (5)=0)

The proof that L (X) can be recognized by FSM is
similar to that of Theorem 1, so the proof details are
1gnored here.

Theorem 3: If X = (S, T, F, M,, S) is an S-net with
primitive transitions only, I. (X) can be recognized by the
parallel of several same finite automatons.

Proof: For any S-net X = (3, T, F, M,, Sp) with primitive
transitions, 1f ¥s € S, M, (s) = 0, we can construct another
S-net X' = (S8, T, F', M, Sg), such that §' ~ Suis, }, F'~Fu
G te T, t=20},

Yse § M, (8) « {MDI(S)
According to Theorem 3 (Zeng and Wu, 2002), we
know 1. (%) is an ¢-closure of a regular expression. We

can prove that L (3) =L (Z")".

108

We construct a finite automaton FSM = (T, Q, &, q,
qp), as follows:

I'-T

Q ~ R(M'y)

O — {(M', £, M) M, M, € R (M'p) A (M, [t=M))}
qp ~ My

g~ M, (Vs e S-5, M, () =0)

and we can prove L (X" = L (F3M).

In order to prove 1. (X) can be recognized by the
parallel of an FSM, we should prove L () =L (&)*=L
(FSM)®, where L (FSM) is the language recognized by
FSM.

First, we prove that T, () c L. (FSM)". For any o that
can be recogmzed by the S-net % (3, T, F, M,, 5;), it means
0 £ L (X)) Because Vs £ 5, M, (s) = 0, there must be a
primitive transition t can be fired for finite times (suppose
the number is n). So after firing, a finite number of token
of ¥ move mto the output places of t and finally reach the
set of end places 3; Let, 0, 0,, 0s,..., 0, trace the transition
firing sequence of token 1, 2,..., n, then 0-0/||0;|0;]...|0,.
It is obvious that each o, (j € {1, 2,... n}) can be recognized
by FSM. Therefore, 0 € L (FSM)*.

Then, we prove that T, (FSM)” cLL (%). Yo € L (FSM)®,
then 0-0,]|0;]04]...|l0, and Yo, € L (FSM) (je {1, 2,... n}),
for all o, 0, is a transition firing sequence that can be
traced by firing one primitive transition t n % and the
tokens produced by transition t move to the output places
and finally reach the set of the end places S;. So, 0, € L(%).
Therefore, 0-0,|0,[0,]...|0, traces the behaviors of firing
primitive transition and the tokens produced move mto
the terminal place set with n times. So 0 € L. (Z).

Theorem 4: X = (S, T, F, M, 3) 1s a marking S-net with
primitive transition only, L (X) can be recognized by the
parallel of several finite automatons.

Proof: For any marking S-net X = (S, T; F, M, Sy witha
primitive transition, we can construct another two S-nets
2, =(S, T;F, M, Sp and X, = (5, T, F_, M,,, Sp without
any primitive transition, such that L (X) = L (X)L (%,)"
2, =8, Ty Fu My, S, X, = (S, Ty F,, My, Sy can be
constructed as follows: S,- Sufs,}, F.-FU {(t, s,)|te T,
t=ont.

M,(s) s=s,
WseS, (M (s) « 0
=8,

in

0 s=s,

Wse S, 1M, (8) « {1

S=5,

Inform. Technol. 1., 10 (1): 106-112, 2011

We can prove that L. () =1 (Z,) | L ()"
We construct two finite automatons FSM, (T, Q,, 8,,
Qo1» qf) ElIldFSMZ (F: Qz: 62; Qozs qf), as follows:

I'-T

Qr R(My,), Qp = R (M)

61 - {(M1> t, Ml)‘Ml: M1 eR (MDI) A (M1 [pMQ}
62 - {(MZ: t, Mz)‘Mz: Mz eR (an) A (Mz [pMz)}
Ao~ Moy, oy = My,

g = M, (¥ € S-S M, (3)=0)

The proof that L () can be recognized by two
paralleling automatons FSM, and FSM,, is similar to that
of Theorem 1 and that of Theorem 3, so the proof details
are ignored here.

ALGORITHM DESIGN AND COMPLEXITY
ANALYSIS

Here, we present the recogmtion algorithms for the
languages of the four kinds of S-nets and analyze the
complexity of the proposed algorithms. First, a
construction algorithm for a finite automaton that can be
used to recogmze the language of a bounded Petri net 1s
proposed. This construction algorithm is applied for the
language recognition of each kind of S-net.

A construction algorithm for a finite automaton
Algorithm 1: Pr oFSM ()

Input: A bounded Petrinet X = (5, T, F, M,, 3p

Output: A finite automaton FSM = (T, Q, 8, q,, ;) used to
recognize the language of X

Begin:

Step 0: T'~T, Q- M. 8~ 0,q, - M}, g~ M}, (¥s
€ 3-S;, M(s) = 0). Let M, be the original state
and label it new

While there exists a state labeled by new Do
Select any one state which 1s labeled as new and
assume that it 13 M

If there exists a state same as M in the directed
path from M, to M then change the label of M
with old and go to Step 1

If M = M, then change the label of M as termmnal
state and go to Step 1

Step 4: For any t £ Tsuch that M[t > Do

Step 1:

Step 2:

Step 3:

Compute the state M' after firing t, where M[t>M'
Add a new state M', change the label of it as new and
draw a directed arc from M to M'. The arc is labeled
with t

Q- Qu iM%, 8 -3~ {{M, t, M}

109

End For

Change the label of M as old, go to Step 1.
End While.

Step 5: Output FSM (T, Q, 8, q,, q2).
End.

Theorem 5: The time complexity of Algorithm 1 1s
O (K’ mn), where n is the number of places, m is the
number of transitions and k is the number of reaching
states of the given Petri net.

Proof: Let, & = (8, T, F. M,, 3;) be a bounded Petr1 net.
The number of its places is n, the number of its transitions
is m and the number of its reaching states is k. In
Algorithm 1, the factors determine its time complexity as
follows:

(1) Store the initial state M,: The time is n

(2) Determine the enabled transitions in state M: To find
the transitions enabled m state M, we should check
all the n places. If the marking of this place is not 0,
its output transition can fire. The time to execute the
above operate 1s n*m. Since there exist at most k
states 1n the Petr1 net, the run time 1s not more than
k*n*m

(3) Generate new state: Because the total number of

transitions enabled m state M may be m, at most m

new states will be generated. Then we should check

whether the new state has already been generated.

Every time we may check k times (the states of Petri

net 1s k), so the time 1s k*m. Also, every state

mcludes n umts and the Petri net has k states. So the

time to generate new state may be k*n*k*m

(4) Store state transfer function: The time 1s k

Above all, the time of the whole algorithm 1s

nH*n*mAk*n*k*m+k, so the time complexity is < (k*mn).

Recognition algorithm for the language of a marking
S-graph:
Algorithm 2 s_ident (%, 0)

Input: A marking S-graph ¥ = (3, T; F, M,, Sp and the

string to be recognized o,

Output: OK or ERROR,

/{ Tt the output is OK, it means that the string o can be

recognized by the marking S-graph. If the output 1s

ERROR, it means that the string o can not be recogmized.

Begin:

Step 1: Generate the finite automaton of a marking
S-graph X = (3, T; F, M,, Sp using ProFSM (%)

Step2: 0 - 020,20;%..20,, 1~ 1 and M - M,

Inform. Technol. 1., 10 (1): 106-112, 2011

Step 3: Tfi<n goto Step 4, else go to Step 5

Step 4: If there exists 8 (M, 0, M), then M - M', 1 - i+1,
go to Step 3, else output ERROR, End

Step 5: If M = M,, output OK, else output ERROR

End

Theorem 6: The time complexity of Algorithm 2 is © (k*mn
+ N,k%), where n is the number of places, m is the number
of transitions, k is the number of reaching states of the
given marking S-graph and N, 1s the length of the
transition sequence to be recognized.

Proof: Let, £ = (3, T; F, M, So be a marking S-graph. The
number of its places is n, the number of its transitions is
m, the number of reaching states is k and the length of the
transition sequence to be recogmzed 1s N,. In Algorithm
2, the factors determine its time complexity as follows:

(1) Generate finite automaton: In Algorithm 1, the time
complexity is O (k’mmn)

Store the transition sequence: The time is N,
Recogmize the transition sequence: If we want to
check whether the transition sequence can be
recognized by the Petri net, we should check every
character of the sequence. Every time we should
search all the state transition functions to determine
which function matches. There exists k states, so
there may be at most C’; state transition functions.
The length of the transition secquence is N,, so the
time is N, *C*,. So the time complexity is O (,K’N,)

(2)
3)

Therefore, the time complexity of Algorithm 2 i1s
O (K*mn+ N k).

Recognition algorithm for the language of a marking
S-net with terminal transitions but without primitive
transitions:

Algorithm 3 s_ident2 (Z, 0)

Input: A marking S-net ¥ = (S, T, F, M,, S;) with terminal
transitions but without primitive transitions and the string
to be recognized 0.

Qutput: OK or ERROR

/1 If the output 15 OK, it means that the string ¢ can be
recognized by the marking S-net. Tf the output is ERROR,
1t means that the string ¢ can not be recognized. Steps are
as folows:

Step 1: With Theorem 2, change X = (5, T, F, M, Sy to
=S, T F M, S

Step 2: Generate the finite automaton of the marking
S-graph X' = (3, T; F', M',, §'9) using ProFSM
(&

110

Step3: 0 - 0,20,%0,0.00,, 1~ 1 and M - M,

Step 4: If i<ngo to Step 5, else goto Step 6

Step 5: If there exists & (M, o, M), then M - M', 1 - 1+1,
go to Step 4; else output ERROR, End

Step 6: If M = M,, output OK, else output ERROR

End.

Theorem 7: The time complexity of Algorithm 3 18 O
(,k’mn+N k", where n is the number of places, m is the
number of transitions, k is the number of the reaching
states of the given marking S-net and N, is the length of
the transition sequence to be recognized.

Proof: Let, 2 = (3, T; F, M,, Sy be a marking S-net with
terminal transitions but without primitive transitions. The
number of its places 1s n, the number of its transitions is
m, the number of its reaching states is k and the length of
the transition sequence to be recognized is N,. The
difference between Algorithm 2 and 3 is the process of the
terminal transitions. The time to find and cancel terminal
transitions 1s m*n and the complexity is O (mn). After the
process, the total number of its places m the marking S-
net becomes ntl, so the time complexity of generating
finite automaton and recognition algorithm for the
language becomes © (K*m (nt1HN_k*), so the time
complexity of Algerithm 3 is O (Kmn+N k).

Recognition Algorithm for the language of an S-net with
primitive transitions only:
Algorithm 4 s_ident3 (Z, 0)

Input: An S-net X = (8, T; F, M,;, Sg with primitive
transitions only and the string to be recognized o,
Output: OK or ERROR

/f If the output 15 OK, 1t means that the string 0 can be
recognized by the S-net. If the output is ERROR, it means
that the string o can not be recognized. Steps are as
folows:

Step 1: Generate X' = (3, T, F', M, 5') with Theorem 3

Step 2: Generate the finite automaton of the marking
S-graph X' = (S, T; F', M, 5'9) using ProFSM
(&

Step3: o-0/|0;0..[0,1- 1,71 and M — M,

Step 4: If j2n, goto Step 5, else go to Step 10

Step 5: Ifi<n, goto Step 6, else go to Step 8

Step 6: Ifo,#0goto Step 7, else i — i+] goto Step 4

Step 7: If there exists & (M, o, M') then M - M', 0,0,
i—itl,j—jtl, goto Step 4, elsei — i+l go to
Step 4

Step 8: IfM =DM, theni -1, M - M, go to Step 4, else
goto Step 9

Step 9: Output ERROR, End.

Step 10: Output OK, End

Inform. Technol. 1., 10 (1): 106-112, 2011

Theorem 8: The time complexity of Algorithm 4 is C (k*mn
+ DN_k*, where nis the mumber of places, m is the number
of tramsitions, k 1s the number of reacling states of the
given S-net and N, 1s the length of the transition
sequence to be recognized and D is the number of
primitive transitions included in transition sequence.

Proof: Let, X = (5, T; F, M,, 5) be an S-net with primitive
transitions only. The number of its places is n, the number
of its transitions 1s m, the number of its reaching states 1s
k and the length of the transition sequence to be
recognized is N, and the number of primitive transitions
included in transition sequence is 1.

The difference between Algorithm 2 and 4 is the
process of primitive transition and the recognition
algorithm must be execute D times. The time to find and
cancel primitive transition is m*n and therefore, the time
complexity is O (mn). After the process, the total number
of its places becomes nt+1. According to Theorem 5, the
time complexity of generating finite autematon is O (kK*mn
(nt+1)) and m Theorem 6, the time complexity of
recognition algorithm executing one time is O (Nk™, so
the time complexity of the recognition algorithm executing
D times is O (DN k).

Therefore, the time complexity of Algorithm 4 is O
(K'mn+DN k).

Recognition algorithm for the language of a marking S-
net with primitive transitions only:
Algorithm 5 s_ident4 (X ,0)

Input: A marking S-net ¥ = (3, T; F, M,, Sp with primitive
transitions only and the string to be recogmzed a;
Output: OK or ERROR

/1 If the output 15 OK, it means that the string ¢ can be
recogmzed by the marking S-net. If the output is ERROR,
it means that the string o can not be recognized. Steps are
as folows:

Step 1: Generate X, = (S, T; F, M,,, 5p, ,= (5, T, F,,
My, S¢) using Theorem 4

Generate finite automaton FSM, of marking
S-graph 2, = (S, T; F, M, 5S¢ using ProFSM ()
(e {l,2})

0 - 04|0;]05]... [0, 1 - 1,7 -1 and M - M,

Step 2:

Step 3:

Table 1: Running time of the test example

Step 4: Delete the transition sequence already been
recognized by FSM,

4.1 Ifj#mn, goto 4.2, else go to Step 7

4.2 Ificn, goto 4.3, else goto 4.5

43 Tfo#0,gotod 4 elsei—it]l goto 4.1

4.4 If there exists & (M, X, M') then M — M, 0,0, 1~ i+1,
j-jtl gotodl, elsei—it]l goto 4.1

45 fM=M,theni- 1, M - M, goto Step 5, else go to

Step 6
Step 5: Delete the transition sequence already been
recognized by FSM,

51 Ifj#n, goto 5.2, else go to Step 7

52 Tfi<n, goto 5.3, elsegoto 5.5

53 Ifo#0goto54,elsei— i+l goto 5.1

5.4 If there exists 8 (M, , M) then M - M', 6.-0, 1 - 1+1,
J-Jtl goto 5.1, else1— 111 goto 5.1

55 fM =M, theni -1, M - M, goto 5.1, else go to
Step 6

Step 6: Output ERROR, End

Step 7: Output OK, End

Theorem 9: The time complexity of Algerithm 5 is O (K'mn
+ DN, k%), where n is the mimber of places, m is the number
of transitions, k is the number of reaching states and N, is
the length of the transition sequence to be recognized and
D 1s the number of primitive transitions included m the
transition sequence.

Proof: Let, X = (5, T; F, M, S;) be a marking S-net with
primitive transitions only and the number of its places is
n, the number of its transitions is m, the number of its
reaching states 15 k and the length of the transition
sequence to be recogmized i1s N, and the mumber of
primitive transitions included mn transition sequence 1s D.

With Algorithm 5, we know there are two finite
automatons, so the recognition time includes two parts.
One is similar with Algorithm 2 and another is similar with
Algorithm 4. According to Algorithm 2, 4 and Theorem 6,
8, it 1s easy to prove that the time complexity of Algorithm
4.51s O (IKmn + DN_K?).

EXPERIMENT TESTS

We mmplemented all Algorithms in Section 4 with
VC++ 6.0 and with the programs we have tested the time

S-net Transition sequence Parameter (m, n, N, k, D) Recognizability Running time (sec)
Figure 1a ty ot tat Etuttotot, by m=4n=3N, =12, k=46 OK 256
Figure 1a EyEbatsty ttatataty byt m=4,n=3N,=12,k=6 ERROR 249
Figure 1b ot bty Gt Gty Gty Bty s m=3n=2N,=14, k=3 OK 84
Figure 1b ot bty Gt Gty Gty Bty s m=3n=2N,=14, k=3 ERROR 83
Figure 1¢ Ly Egtatats by Eotstatat totsty m=3n=2,N,=14,k=3,D=4 OK 126
Figure 1¢ £y Egtatats by Eotots totstotsty m=3n=2,N,=14,k=3,D=5 ERROR 100
Figure 1d tatat, totatatatatatt dots m=5n=3N,=13,k=3/4 OK 282
Figure 1d totats totatatatotatstat totat: m=5n=3N,=13.k=34. D=2 ERROR 300

111

Inform. Technol. 1., 10 (1): 106-112, 2011

complexity of all kinds of S-net. The running time is in
Table 1. From Table 1, we can see all the running times of
the given test examples are consistent with the

conclusions about the time complexity of the proposed
algorithms.

CONCLUSIONS

Although, perfect solutions to problems of Petri net
have been given by many researches, most of them regard
Petri net as language generators and only a few people
(Tang ef al., 1998) recogmze the possibility of utilization
of Petri net as language generators. Jiang ef al. (1998) give
several recognition algorithms for Petri nets languages,
but they are too complicated to use for ordinary Petri nets.
S-net 18 a kind of structure-simple Petri nets and the
recognition algorithms for S-net language will be of great
benefit to the further study of languages recognition for
ordmary Petri nets.

In this study, first we give the recognition algorithms
of S-nets that are classified according to the primitive and
Second, we analyze the time
complexity of these algorithms. Finally, by several groups
of experimental data, the time complexities of those
proposed algorithms are checked.

terminal transitions.

ACKNOWLEDGMENT

This study is supported partly by the NSFC under
Grant No. 60603090, 90718011 and 508751 58; the Excellent
Young Scientist Foundation of Shandong Province of
China under Grant No. BS2009DX004; the Special Fund
for Fast Sharing of Science Paper in Net Era by CSTD
(20093718110008), the Open Project of Computer

112

Architecture Lab of ICT, CAS (No. ICT-ARCH200807);
the Research Foundation of Shandong Educational
Committee under Grant No. JOBLI77, Shandong Natural
Science Foundation for Distinguished Young scholars of
China No. TQ200816 and the Taishan Scholar Program of
Shandong Province.

REFERENCES

Garg, V.K. and M.T. Ragunath, 1992. Concurrent regular
expression and their relationship to Petri nets.
Theoretical Comput. Sci., 96: 285-304.

Tang, C.J, Y.P. Zheng and S.G. Shu, 1997. Design and
optimization of system based on language of Petri
net. J. China Inst. Commun., 18; 27-33.

Tiang, C.J., Z.H. Wuand C.H. Wang, 1998. Recognizer of
PN language. Acta Electronic Sinica, 26: 127-129.

Hang, C.J. and WM., Lu, 2001. On properties of
concurrent system based on Petri net language.
T. Software, 12: 512-520.

Wu, Z.H., 2006. Introduction to Petri Net. China Machine
Press, Beijing.

Zeng, Q.T. and Z.H. Wu, 2002. The language characters
analysis of analogous s-graph. Comput. Sci,
29:120-122.

Zeng, Q.T., 2004, Behavior descriptions of structure-
complex Petri nets based on
composition. I. Software, 15: 327-337.

Zeng, Q. and 7. Wu, 2004, Language behavior description
of structure-complex. Petri net based
decomposition. . Syst. Eng., 19: 300-306.

Zeng, Q.T., ZH Wu and B.X. Ma, 2004. Process and
language expression of Petri net. J. China Comput.
Syst., 25: 654-658.

synchronous

on

