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Abstract 1. Introduction

Commodity operating systems, e.g. Linux and Android, run- Nowadays, PC and smartphone running the commaodity op-
ning on PC or smartphone, are ubiquitous in home, commer-erating systems, which are ubiquitous in home, commercial,
cial, government, and military settings. The booming pop- government and military settings, become significantly in-
ularity of PC and smartphone makes the commodity oper- dispensable in our life. According to a report from Gartner
ating system an attractive target for attacks. These sgstem [1], the worldwide PC shipments totaled 82.6 million units
are tasked with a variety of applications, e.g. from secure just in the fourth quarter of 2013. The most popular operat-
software provided by trusted enterprises to regular agplic ing systems on PC are Windows, Linux and Mac OS. Various
tions including games and web browsers downloaded from applications are installed and executed on the commodity
untrusted third-party website. operating system every day. Besides PC, recent years have
Since PC and smartphone are used both for working andalso experienced explosive growth of smartphone sales. In-
entertainment, both trusted and untrusted applicatienmar  evitably, the rise in the popularity of smartphones alsoesak
stalled on the same commodity operating system. The com-them an attractive target for attacks. According to the repo
plex interface between malicious applications and the-oper from Canalys [2], the year of 2011 marks as the first time
ating system kernel makes the latter one vulnerable to mal-in history that smartphones have outsold PCs. Their boom-
ware. The compromised untrusted operating system is ableing popularity can be partially attributed to their imprdve
to break both privacy and integrity of secure applications. functionality and convenience for end users.
The user mode secure application is not tamper-resistdntan  PCs are used for a variety of daily works such as checking
immune to the privileged malicious operating system kernel emails, video conference and data processing. Smartphones
Various methods have been proposed to execute mutu-are also no longer basic devices for making phone calls and
ally mistrusting software on commodity operating systems. receiving text messages, but powerful platforms, with com-
In this talk, we divide the state of the art research papéosin parable computing and communication capabilities to com-
three classes. First, we discuss how to protect the secure apmodity PCs, for video conference, gaming, and even online
plication from the untrusted operating system. Second, we shopping. Generally, different applications have disgara
discuss the isolation of untrusted application from the be- level of security requirement. For instance, on a smartphon
nign operating system. Third, we discuss how to remove the running Android, the online banking application has a highe
trust relationship between application and operatingssyst  level of security requirement than the Angry Birds.
that is, neither application nor operating system trusheac The execution of mutually mistrusting software brings se-
other. We finally propose a framework for the secure execu- curity trouble to the commodity operating systems. Suppose
tion of sensitive code on ARM architecture with TrustZone the PC is running a Linux operating system. The user might
technology. use the PC to view a lot of PDF files every day. The PDF
file injected with malware is able to infect the operating-sys
tem because of the complex interface between the applica-
tion and the operating system. Latter, the user may login int
the online bank account to check the deposit. As the under-
pinning privileged operating system kernel, including key
board driver, has already been compromised, the browser’s
privacy, i.e., the user’s credentials, will be stolen by #te
tacker.
Another example is on a smartphone running an An-
droid operating system. Users are suggested to download
Android applications from official website, such as Google
Research Proficiency Exam ReportAugust, 2014, Stony Brook, NY, USA. Online Store. However, many users download repacked ap-



plications, e.g., games, from the untrusted third-partpwe 2. Secure App on Untrusted OS

site. F(_)r instance, without prote_ct_ion, the maliciou_s ciqeal 21 OScan beuntrusted

game is able to elevate the privilege, compromise the An- _ )

droid runtime and even the Linux kernel. The compromised Although commodity operating systems are developed by
Android operating system is able to infect the privacy and extremely professional software developers, the security

integrity of other applications, e.g., the user’s idenifion provided by commodity operating systems is often inade-
of Facebook. quate. Trusted OS components include not only the kernel

In this paper, we discuss the solutions for the problems in- but also device drivers and system services that run with roo

troduced by the execution of mutually mistrusting software Privilege (€.g., daemonsthatrunas rootin Linux). Oncéisuc
We formulate the problems into three sub-problems. The Privileged code is compromised, an attacker gains complete
first problem is to protect the secure application or seresiti  2CC€SS t0 sensitive data on a system. The privileged operat-
PAL (Pieces of Application Logic) from the untrusted oper- g System kernel can read/write any code/data region of any
ating system. Commodity operating systems entrusted with US€r mode process. .Both privacy and integrity are imperiled
securing sensitive data are remarkably large and complex 0¥ the hostile operating system. o

and consequently, frequently prone to compromise. The pri- Besides directly manipulating a secure application'estat

vacy and integrity of the application are expected to be pro- the hostile opereting system kernel can also compromise_the
tected even in the event of a total OS compromise. Solutions!S€r mode application by lago attack [17]. On commodity

to this problem have a variety of applicationsin real lierfr ~ ©OPerating systems, the application and kernel are conceptu
protecting the privacy and integrity of the certificate gene ally peers and the system call API defines an RPC interface
ation process on a CA server to isolating the sensitive list betweenth_em. A carefully chosen sequence of integer return
of Transaction Authentication Numbers (TAN) from the un- Values to Linux system calls can lead a supposedly protected
trusted Android operating system on a smartphone. process astray. The following sample_code demonstraFes one
The second problem is to isolate the untrusted applica- 1290 attack. It maps a 1024 byte region of memory via the
tion or an untrusted piece of code from the operating sys- MMap2 system call and then reads up to 1024 bytes into it
tem. Modern commodity operating systems are underpin- from a _f|Ie descrlptor using the read system call. _Smce the
ning many applications from different sources. The complex Kernel is responsible for memory management, instead of
interface between the application and the operating systemtn€ address of the newly allocated memory region, it returns
opens a large attack surface for the misbehaving applitatio 2" address on the stack. The stack_ will pe overwritten with
to compromise the rest of the operating system. The oper-UP to 1024 bytes of the kernel’s choice with the read system
ating system can be compromised by a piece of native codetall- Therefore, a saved return address on the stack may be
downloaded and executed by the web browser with mecha_overwrltten and the program can be coerced into executing a
nisms such as ActiveX and NPAPI, or an Android applica- réturn-oriented program.
tion infected by DKFBootKit [13]. p = mmap(NULL,1024 ,prot , flags~1,0);
The third problem is how to establish the two-way pro- read (fd,p,1024);
tection, that is, to protect the application from the operat
ing system while to protect the operating system from the ~ To protect the secure application from the malicious OS,
application. We rethink the security model and argue that a @ mechanism should be used to isolate the secure applica-
two-way sandbox is desired. We discuss MiniBox [27], the tion from the OS. In the meantime, the isolated application
first paper whose objective is to remove the trust between Should also be able to use the OS services. Ideally, the lago
applications and the operating system on the Platform as a@ttack is prevented. In the following sections, we will dis-
Service (PaaS) cloud computing. cuss different mechanisms on secure application protectio
In this paper, we discuss the evolution of prior works. We We divide the prior works into four classes as in Table 1.
organize previous works based on the problems classifica-
tion and essential design considerations when building sol 2.2 Trusted Hardwarebased
tions. The evolution graph of prior works on the three prob- Trusted Hardware allows the execution of pieces of appli-
lems is in Figure 1. In section 2, we discuss the protection cation logic (PAL) in an isolated environment. Flicker [32]
of secure application from the untrusted operating system. leverages the hardware support for Trusted Platform Module
Section 3 is about the isolation of untrusted applicatiomfr ~ (TPM) [3] and late launch recently introduced from AMD’s
benign operating system. In section 4, we discuss MiniBox Secure Virtual Machine (SVM) technology. SVM chips are
[27], the most up-to-date research paper on removing trustdesigned to allow the late launch of the software (e.qg. ¥lrtu
between application and the underpinning operating system Machine Monitor or Security Kernel) at an arbitrary time
with the SKINIT instruction in CPU protection ring 0. As
part of the SKINIT instruction, the processor first causes th
TPM to reset the values of PCRs 17-23 to zero, and then
transmits the contents of the PAL to the TPM so that it can
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Figurel. Evolution graph of prior works. The left branch includepsvorks when application is trusted but OS is malicious.
The right branch includes prior works when application isrusted but OS is benign. MiniBox is the combination of two
branches.

Solution Category Resear ch Papers

Trusted Hardware Basef Flicker [32], TrustVisor [31]

Hypervisor Based Overshadow [18], InkTag [23], TrustVisor [31], Cloud Temal [29]
Instrumentation Based | Virtual Ghost [19]

TrustZone Based TLR [34], VeriUl [28], TrustUI [26]

Table 1. Solution categorization on the protection of secure apfibe (PAL) from the untrusted OS.

be measured and extended into PCR 17. Software cannotre2.3 Hypervisor based
set PCR 17 without executing another SKINIT instruction. a¢ we mentioned in last section, hypervisor can isolate
PALs can leverage TPM-based sealed storage to maintainge secure application from the untrusted operating sys-
state across Fllcker. SEssIons. Therefore, the sensite 1@ o Overshadow [18] utilizes a binary translation based
can be spit Into multiple sessions. ) . hypervisor with a mechanism called cloaking to prevent the

_ However, Flicker's performance is not promising, espe- g est operating system from reading or tampering applica-
cially for multi-session PAL. At the beginning of each ses- {jon code, data and registers. Cloaking is the mechanism to
sion, the TPM should decrypt sealed data from persistent 5 osent an application context with a cleartexted view of
storage to recover the state of the previous session of this;ig pages, and the OS context with an encrypted view. At
PAL. At the end of this session, the TPM seals the data againany point in time, the page is mapped into only one shadow
and stores the data on persistent storage. The frequent €Mhage table - either a protected application shadow used by
cryption/decryption undermines the performance of Flicke | aked user-space processes, or the system shadow used
TrustVisor [31] improves the performance of Flicker by sim- ¢, 4| other accesses. Overshadow introduces a shim into
ulating the TPM-based cryptography operations on a micro- he aqdress space of the cloaked application, which cooper-
TPM. The micro-TPM is simulated by CPU chip. TrustVi- - 5te with the VMM to mediate all interactions with the OS.
sor, which is atiny hypervisor, is booted with the late launc ¢ ghim uses an explicit hypercall interface for interagti
It is responsible for the registration, invoke and unregist |, .+t the VMM. System call transitions between guest-user

tion of all PALs. TrustVisor isolates PAL from the untrusted mode and guest-kernel mode are always trapped by a Binary
operating system with the nested page table (NPT). Hard-1,4nslation based VMM.

ware TPM attests the integrity of the tiny hypervisor and the However, Overshadow has focused on simply isolating

integrity of PAL is attested by the software-emulated Micro  sted code and data from the OS, with minimal support for
TPM. TrustVisor is the combination of both trusted hardware securely using OS features, that is, it is not able to prevent

and hypervisor based solutions. lago attack. It also doesn’t support flexible access control



and crash consistency. InkTag proposes paraverification, a(
technique that simplifies the hypervisor by forcing the un-
trusted OS to participate in its own verification. InkTag re- User Mode User Mode
quires the untrusted OS to provide information and res@urce
to both the hypervisor and application that allow them to ef-
ficiently verify the operating system’s actions. Verifyitigat Hyp Mode
the OS provides system services correctly allows InkTag to
avoid having to reason about the OS’s implementation of |
these services. Trusted application code executes in a higt
assurance process, or HAP, which is isolated from the OS.  Figyre 2. Split CPU Mode with TrustZone Support
Nearly all application-level changes are contained in disma

2000-line library (libinktag) the use of which is largely-en
capsulated in the standard C library. as the normal world, where untrusted code executes, and the

Cloud Terminal [29] protects the secure application by Secure world, where secure services run as in Figure 2. These
running the software on the remote server, instead of pcall Processor modes have independent memory address spaces
In Cloud Terminal, the only software running on the client, and different privileges. While code running in the normal
which the user interacts with, is a lightweight secure thin world cannot access the secure world address space, code
terminal whose primary functionality is to render the bipna  running in the secure world can access the normal world ad-
sent by the remote server. Most application logic is in a re- dress space in certain conditions. Besides memory, periph-
mote cloud rendering engine on the remote server. On the€rals and interrupt are also world-sensitive. World swigch
client side, the secure thin terminal is isolated and ptetec ~ done via a special instruction called the Secure Monitof Cal
by the hypervisor. The tiny hypervisor helps supply a se- (Smc).
cure display and input path to remote software. The secure Trusted Language Runtime (TLR) [34] is a system that
thin terminal has a very small TCB (23 KLOC) and no de- Protects the confidentiality and integrity of .Net mobile ap
pendence on the untrusted OS. Therefore it can be easilyPlication from OS security breaches by separating and iso-

Normal World 1( Secure World

Kernel Mode
Kernel Mode

J J

Secure Monitor Mode

checked and remotely attested to. lating the application’s security-sensitive logic fronetfest
. of the application. TLR and security-sensitive code are in
24 Instrumentation based the secure world of TrustZone. TLR is a small runtime en-

Virtual Ghost protects application from a compromised or gine that is capable of interpreting .Net managed code in-
even hostile OS. It leverages compiler instrumentatiothiwi  Side a trusted secure environment. It is carefully crafted
LLVM) to create ghost memory that the operating system by borrowing parts of the runtime engine design from the
cannot read or write. Virtual Ghost is based on the Secure .NET Micro Framework (NETMF) so that the TCB is sig-
Virtual Architecture (SVA) [20]. In SVA, all kernel and mod-  nificantly smaller than a full-blown .NET framework and a
ule code must first go through LLVM intermediate repre- full-featured OS. Security-sensitive code and data are in a
sentation form (bitcode). The SVA VM translates code from Trustbox which is an isolation runtime environment thatpro
virtual instruction set to the native instruction set of kized- tects the integrity and confidentiality of code and data. The
ware. SVA adds a set of instructions to LLVM called SVA- Trustlet specifies the secure data and an interface thaedefin
OS; these instructions replace the hardware-specific eperawhat data can cross the boundary between the Trustbox and
tions used by an OS to communicate with hardware and to the untrusted world. With TLR, the developer should manu-
do low-level state manipulation. During the translatioorfr ally split the application into sensitive and nonsensifiagt.
virtual instruction to native instruction, load/store ogons A secure application can package the code handling semsitiv
are instrumented so that access to secure memory pages cagiata into TrustLet and run it in the TrustBox in the Secure
be prevented from OS without unmapping or encrypting se- World.
cure pages. Virtual Ghost also enforces Control Flow In-  However, TLR does not support direct 1/O within the Se-
tegrity (CFI) [14] on kernel code in order to ensure that the cure World. VeriUl [28] is able to securely handle user irgput
compiler instrumentation of kernel code is not bypassed.  (i.e., passwords) and communication with remote servers.
Smartphone applications often augment their functiopalit
25 TrustZone based by accessing user data mentioned by services such as Twit-
Considering the limited computing resources on smart- ter and Facebook. VeriUl is proposed to prevent phishing
phones, hypervisor and instrumentation based solutians ar attacks by untrusted OS through a secure and isolated envi-
not applicable to the smartphone. TrustZone [4]is utiliaad ~ ronment for password input and transmission. An app can
smartphone to protect the secure application. TrustZoae is invoke a web browser running in the secure environment
hardware security technology incorporated into recent ARM of TrustZone to retrieve an OAuth token after the user suc-
processors. With TrustZone, the processor can execute in-cessfully authenticates. Even the malicious OS cannot have
structions in one of two possible security modes, refermedt access to the password data. The secure kernel running in



secure environment can use its protected resources (i.e., 8.9. Since this approach is clear and self-explained, wie wil
vendor-installed public-key pair) to generate a signeglsatt  not discuss it in detail in this paper.
tation that includes a hash of the Secure World’s system soft
ware as well as information about the user’s login request. 3.2 Intra-Processbased
As VeriUl runs a Linux in TrustZone secure world to pro-  Intra-Process protection is to isolate the untrusted mod-
vide the attested login for users, it has a very large TCB. ule from other memory regions in the same address space.
TrustUI [26] takes a step further by excluding drivers for SFI [35] is proposed to sandbox the untrusted module by
user-interacting devices like touch screen from its tmiste rewriting the untrusted code at the instruction level, that
computing base. TrustUIl is a new trusted path design for is, to instrument store/load and control flow instructions.
mobile devices that enables secure interaction between endHowever, it only works for RISC architectures. PittSFleld
users and services. It is based on ARM’s TrustZone technol-[30] presents sandboxing technique that can be applied to
ogy and requires no trust of the commodity software stack. CISC architecture e.g. IA-32, and whose application can be
TrustUl adopts a mechanism that logically splits a device checked at load-time to minimize the TCB. Unlike RISC
driver into two parts: a backend running in the normal world architectures, whose instructions have the same length, th
and a frontend running in the secure world. The backend partx86 has variable-length instructions that might start at an
is the unmodified driver and its corresponding wrapper in byte. To avoid this problem, PittSFleld divides memory into
the normal world, while the frontend part works on top of segments whose size and location is 16-byte aligned. New
it and provides safe access to device for secure pages. Thdnstructions are instrumented before store/load and obntr
two parts communicate through corresponding proxy mod- flow instructions to check that the sandboxed module can-
ules running in both worlds which exchange data through not read/write data outside sandbox and transfer to illegal
shared memory. control flow target outside sandbox.
A weakness of PittSFleld is it cannot effectively mediate
the access from untrusted module to operating system ser-
3. Untrusted App on Benign OS vices. Besides isolating the untrusted module, NativerClie

In this section, we discuss the protection of the operating [37] @lso allows the module to interact with services, such
system from an untrusted application or a piece of untrusted?@S file /O and local database access, by the combination of
code. In this paper, we call both untrusted application and Intra-process and inter-process approaches. An IntreeBso
untrusted code as untrusted module. The untrusted modulg?@sed sandbox is used to isolate the untrusted module from
can be pieces of native code downloaded by a web browser,the runtime service, which resides in the same addr_ess space
an application uploaded and executed on the PaasS server, 0RS the sandboxed_ un_trusted module. Runtime service medi-
an Android application downloaded from an untrusted third- ates the communication between the untrusted module and
party website. Although the isolation of untrusted module other processes including web browser and other services.
can prevent it from infecting the operating s_ystem, iF isfar 33 |nter-Process based

from enough. There are other challenges. First, the isblate
code module wants to interact with the operating system
services via system calls. Second, the isolation (sandbox
should not impact the performance of program execution.
Third, a low implementation overhead is expected, that is,

Krude et al. [25] propose an inter-process based approach to
)sandbox the untrusted module. It is especially designed for
Paa$S architectures, where code execution needs to be iso-
lated to protect tenants from unauthorized access to their

the modification to compiler, linker, application sourceleo ~ dat@ by other tenants and to protect the host system from
and operating system kernel source code should be mini-2nY type of intrusion by other tenants. The untrusted mod-

mized. Last, since the smartphone has limited resources, th ule is uploaded to the PaasS server and it is isolated in a new
isolation sh(’)uld be lightweight. " process. Krude et al. use the process barrier and the seccomp

In this paper, we categorize the prior works according to filter mec_hanism to restrict access to memory and to the sys-
the granularity of isolation as in Table 2. The granularity o tem call interface. Almost all system calls are blocked for

isolation varies, including intra-process, inter-pragéster- the |§olated process. Besides memory aIIo_catlon _and deal-
namespace and inter-VM. location, the isolated process can communicate with OS by

sending to request to a supervisor process via pipe, which is
the IPC mechanism on Linux. The supervisor process will
31 Inter-VM based process the request and send the response back to the iso-
The naive approach is to isolate each untrusted module intolated process also via pipe.

its corresponding VM. There are a variety of virtual ma-

chine monitors, including Xen [5], KVM [6], Qemu [7], 34 Intéer-Namespace based

and VMWare [8]. Recently, the hardware virtualization ex- The Inter-Namespace based approach is primary proposed
tension has been added into the ARM and the ARM basedfor smartphone running Android. Nowadays, smartphones
KVM [21] is integrated into the Linux kernel since Linux are ubiquitous. Many people use the smartphone both for



Solution Category Research Papers

Inter-VM Based KVM/ARM [21]

Intra-Process Based | SFI [35], PittSFleld [30], Native Client [37
Inter-Process Based | Native Client [37], Krude et al. [25]
Inter-Namespace BasedTrustDroid [16], Cells [15], AirBag [36]

Table 2. Solution categorization on the protection of OS from thewsted application.

working and personal needs. However, the personal applica-AIR and native runtime by either creating a second resource
tions downloaded from the untrusted website can compro- (e.g., memory buffer) or creating a proxy between runtimes
mise the application issued by the trusted enterprise.€Fher and hardware to mediate access from different runtimes.
fore, many users carry multiple phones to accommodate

work, personal and geographic mobility need. Cells [15] 4, Two-Way Protection

proposes a smartphone virtualization solution so thatimult : . L
X : We discussed the protection of secure application from un-
ple virtual smartphones can run simultaneously on the same

. : : trusted OS (e.g., TrustVisor [31]) in section 2 and the pro-
physical smartphone in an isolated, secure manner. : . o :
. ! - . . . . tection of benign OS from untrusted application (e.g., Wati
Unlike the virtualization techniques mentioned in section Client [37]) in section 3. In this section, we discuss the re-
3.1, Cells leverages a lightweight OS-level virtualizathy ) '

the utilization of namespace. Linux namespace is bein usedmoving of trust between the application and operating sys-
pace. P 9 tem. Within my knowledge, currently, MiniBox [27] is the

first and the only attempt toward a practical two-way sand-
Box for x86 native applications by combining TrustVisor and
ative Client.

Platform-as-a-Service (PaaS) is one of the most widely
commercialized forms of cloud computing. According to
Google, in 2012, there were 1M active applications running
on Google App Engine [11], where untrusted applications
are sent by customers. Therefore, it is critical to protect

has PID namespace isolation, network namespace isolation
UTS namespace isolation, mount hamespace isolation an
IPC namespace isolation.

Cells observes that smartphones display only a single ap-
plication at a time, and introduces a usage model which
has one foreground Virtual Phone (VP) that is displayed

a_nd mgltlple background VPs thf’ﬂ are not dllsplay_ed at any the cloud platform from the untrusted applications. Beside
given time. The foreground VP is always given direct ac- . ) :
cloud provider such as Google, security on PaaS is also

cess to hardware devices while the background VPs area concern for cloud customers. People should rethink the

given shared access to hardware devices when the fore- : ;
. : .-, _security model of PaaS cloud computing because a two-way

ground VP does not require exclusive access. Cells provides . .
sandbox is desired.

novel kernel-level and user-level device namespace mecha- . - .
) . ) . Although it seems promising to combine a one-way sand-
nisms to efficiently multiplex hardware devices across mul- . .
box (e.g., TrustVisor) and a two-way memory isolation

tiple VPs. Therefore, untrusted application inside peason ? . . .
) ; mechanism (e.g., Native Client) to establish two-way pro-
VP (namespace) will not be able to compromise the trusted : . .
tection, there are many challenges. First, a deliberate sys

application inside enterprise VP. tem design is required. Second, the interface between soft-

While Cells aims to embrace the emerging Bring-Your- . L
Own-Device (BYOD) paradigm, each VP is treated equally ware .m_od_ules for OS protectl.on and the appllcanon shou_ld
. be minimized and secure. Finally, the design of TrustVi-

and the isolation is achieved at the coarse-grained VP bound . . -
sor doesn’t support lago attack prevention. The final system

ary. Unlike Cells, AirBag [36]'s objective is to boost the . L )

) e ) . design should be able to protect applications against lago
smartphone’s defense capability against the malware-nfec attack
tion by isolating the untrusted application in the AirBag MiniBox [27] combines the one-way sandbox for x86 na-

environment. By dynamically creating an isolated runtime . : . .
: 7 ) ..~ tive code and hypervisor-based two-way memory isolation.
environment with its own dedicated namespace and virtu- , .~ ) o . .
As in figure 3, the sandbox is split into service runtime mod-

alized system resources, AirBag is able to protect the OSules and OS protection modules. The service runtime is in-

from the malicious untrusted applications, e.g., an Ardiroi cluded in the isolated memory space with the application
game repacked with the malware. AirBag creates and decou- Yy sp PP

ples an Application Isolation Runtime (AIR) from the native together to support appl|ca_t|on execut!on. The originat di
Android runtime, which contains Java & Native Libraries assembly based sandbox is not required anymore because

s . . the hypervisor not only isolates the application from OS, bu
Application framework (e.g., SurfaceFlinger service) and also isolates the OS from the application. To prevent lago
Dalvik virtual machine. AIR does not need to be trusted bp i P 9

as it might be potentially compromised by untrusted appli- attacks, the system calls are divided into sensitive calts a

cation. AirBag multinlexes hardware resources between thenon-sensitive calls. All sensitive calls are handled diyec
' 9 P by a LibOS [33], which the application trusts, residing at



Regular Environment Mutually Isolated compromised Android runtime is able to infect the applica-

Execution Environment (MIEE)

: tion in a way that is similar to lago attack. It is expected
= os s & x86 native App i K . .
3 || protection | |5 | |g that the Android application cannot be compromised even
B pan(':;'g;ter 3lle Context switch ( ’-"dbos _ its underpinning runtime is malicious. We hope to investi-
3 - e.g., namic . . .
5 || sanitizing, ||3 ||£ Param marshaling me?no,.; TLS, gate how Linux kernel helps verify the behavior of a com-
g accfs?) z g Svecall disoatah multithreading, promised Android runtime.
- contro D scall dispatcher . . . . . . .
Y P secure 1/0) The hypervisor-based isolation solutions, including Tviss
IN°“'Se"S“‘Ve calls Environment Hypercal sor, InkTag and MiniBox, cause overhead in context switch.
‘ | Switch The VMFUNC instruction released on the latest Intel 4th
- Generation Processor enables the software in guest OS to
’ Hypervisor I

switch the hardware Extended Page Table (EPT) without the

VM exit. Since VM exit is one of primary reasons for perfor-

R — — = - mance overhead of VM, we hope the investigation on how to

Non-sensitive  Sensitive  TCB for TCBfor  Hardware perform secure environment switch using the VMFUNC in-
PAL PAL App protection  OS protection . - .
struction will improve the performance of hypervisor based
Figure 3. MiniBox Architecture solution.

the Mutually Isolated Execution Environment (MIEE). Non- g Future Work
sensitive calls will be forwarded to the Regular Environinen

(RE). The OS in RE handles the non-sensitive calls mediated™MOSt prior works on PC are based on x86 architectur(_a, &.9.,
by the OS protection module in RE. Intel and AMD. x86-based servers are not energy efficient.

To handle hundreds of millions of users and their associ-

5. Discussion ated transactions, companies such as Amazon, Facebook,
_ ) and Google run immense data centers with until-recently
51 MoreDimensions unimaginable computation and storage capacities. As on-

In this paper, we discuss prior works along just one dimen- line services become pervasive, projections indicate that
sion, the trust between the application and OS. In this dimen electricity consumed in global data centers worldwide in
sion, we divide prior works into "App does not trust OS”, 2010 is more than 200B KWh, between 1.1% and 1.5% of
"OS does not trust App” and "Mutually Mistrusting”. There  worldwide electricity use [24]. Three years ago, Google an-
are also other dimensions to discuss the prior works. For in- nounced that their facilities have a continuous elecyrigg-
stance, some works [18, 19, 23, 25, 27, 29-32, 35, 37] areage equivalentto powering 200,000 homes [22].Therefbre, i
proposed for PC and some works [15, 16, 26, 28, 34, 36] is promising to replace x86 with ARM architecture, which is
are proposed for smartphone. While some works are pro-more energy efficient, to build the next generation of sexver
posed for a local PC or smartphone, some works are pro-in the cloud. There are already many ARM development
posed for cloud environment, such as PaaS [25, 27]. Flickerboards published, such as Raspberry Pi, BeagleBone and
and AirBag only work for single application, others such as Cubitruck. Recently, AMD announces plans to sample 64-
TrustVisor, Cells and MiniBox can support many applica- bit ARM Opteron processors [12].

tions from different users simultaneously. Some works are  In the future, we want to explore the security problems
designed to support the protection and isolation of justgge =~ on ARM architecture. Although prior works such as TLR
of application logic (PAL), while Overshadow and AirBag’s [34], VeriUl [28] and TrustUl [26] also use security fea-
protection mechanisms are in the granularity of the whole tures of ARM, they are designed especially for smartphones.
application. Overshadow does not require the modification We propose the first solution to execute the secure PAL for
to the source code of the application while InkTag requires ARM architecture either on a single server or in the cloud
the user to change the way of programming. environment. Virtualization can effectively achieve tha-m
tually memory isolation between application and OS. How-
ever, currently the hardware virtualization extensionas n
Although many prior works have already solved the prob- supported by all ARM CPUs. For instance, the ARM Cortex-
lems with a variety of mechanisms, there still exist some A8 Processor does not support hardware virtualization.
limitations. While MiniBox [27] is the first known attempt to Our proposal, as in Figure 4, leverages the TrustZone,
remove the trust between the application and OS on Paas, iwhich is supported by most ARM CPUs, to isolate the secure
supports only a single guest OS at this time. Besides, TherePAL in the secure world. The regular OS is running in
is no two-way protection on Android. Android makes the the normal world while the secure PAL is executed in the
problem more complex. Unlike Linux, where one task is im- secure world. Unlike virtualization which can create more
plemented as a single application, the task on Android is than one isolated environments, there is only one secure
usually accomplished by a set of applications together. Theworld with TrustZone. To prevent the secure PAL of one

5.2 Limitations



[6] http://wuw.linux-kvm.org.

Secure World Normal World

[7] http://wiki.qgemu.org.
[8] http://www.vmware. com.

Application 1

Application 2

[9] http://openvz.org.

Micro-TPM

Micro-TPM

Secure World Tiny Kernel
TrustMod

ARM TrustZone Hardware

Figure4. Secure execution of PAL on ARM Architecture

application from compromising the PAL of another, all PALs
are sandboxed in the secure world. We will use TrustZone to
emulate the secure boot, late launch and TPM operations.
As ARM boards usually have limited resources, the secure
world tiny kernel will not be loaded into memory unless the
execution of PAL is registered and triggered. To preventlag
attack, we divide the system calls into sensitive calls and
non-sensitive calls. All sensitive calls, which can be used
by malicious OS to mount the lago attack, will be handled
directly by the tiny kernel in secure world. Non-sensitive
calls will be redirected to the untrusted OS in normal world.
As the tiny kernel is only responsible for supporting the
Micro-TPM, memory management and handling sensitive
system calls, the TCB is small.

7. Conclusion

The protection of secure application from malicious OS and
the sandbox of untrusted application from benign OS on
the PC are two relatively mature research topics that have
made substantial advances over the last decade. However,
how to remove the trust between the application and OS on
both PC and smartphone is still not fully explored. Many of
prior works have limitations, e.g., the environment switch
generates nontrivial performance overhead. In this pager,
discuss the evolution of prior works on the three problems.
More future works are expected especially for smartphone

and ARM-based server/cloud. In the future, the design of [20] John Criswell,

cloud computing framework should balance security, perfor
mance, cost and mobility.
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